
PurrCoin

Mu Xi

May 14, 2021

Abstract

Decentralized blockchain systems with turing complete smart con-
tracts enable a multitude of programs. Here we discuss a simple program
called a token. A token, or sub-currency (to ether), can be distributed to
any number of entities and used as a means of exchange or governance.
The methods of distribution are defined in the smart contract and there
are various techniques that result in lower or higher decentralization. Here
we investigate the 50/50 Burn + Pool method used to initialize PurrCoin,
an ERC-20 token contract that lives on the Ethereum blockchain. We
found this method to be successful in distributing the token evenly across
multiple holders and resulted in high decentralization – a fundamental
quality of PurrCoin.

1 Ethereum

1.1 Network

Ethereum is a vast network of computers sharing information to each other in
a peer-to-peer (p2p) fashion. It is essential that some of the computers on the
network are full nodes, and store an append-only database, called the blockchain.
A message sent by a computer with the intent of appending to the database is
called a transaction. This transaction gets picked up by a miner via the p2p
message stream, included in a block, and worked on. Once the puzzle has been
solved, the miner can broadcast this solved block to the network, where it’s
work is validated by other nodes, and included at the end of the chain.

1.2 Smart Contract

Blockchain systems like Bitcoin favor security over functionality and opt for a
much simpler programming language (BitcoinScript). With a limited set of OP
CODES, there is less attack surface and fewer bugs. Contrastingly, Ethereum
contracts have access to a turing complete[1] set of OP CODES, and with higher
level languages like Solidity, it becomes quite easy to create full-fledged pro-
grams. With great power comes great responsibility!

2 Token

2.1 Simple Contract

A token contract at it’s core is as simple as a mapping of address→amount:

1



Alice 10 PURR
Bob 4 PURR

All functions like transfer, burn, and mint just modify the number of tokens
held at that memory location. For example, if we wanted to transfer 5 PURR
from Alice to Bob the resulting map would be:

Alice 5 PURR
Bob 9 PURR

2.2 ERC-20 Contract

As tokens became more widely used and understood, common functionality was
determined and standardized. In November of 2015, a standard interface for
tokens was defined in ERC-20 Token Standard [2]. PurrCoin uses this standard
through the well tested library OpenZeppelin [3].

3 Tokenomics

3.1 Definition

A ”coined” word in the crpytocurrency space that is combination of token and
economics. In essence it encapsulates all game theory and incentives of using
the token. It is also used to describe the distribution method of the token.

3.2 Goals

To enable high security and integrity for downstream projects, the token must
be highly decentralized.

3.3 No Minter

The contract has had its minting feature completely removed. There will never
be more PurrCoin than what was initially created in the constructor of the
contract. PurrCoin supply is hard limited at a generous amount.

3.4 50/50 Burn + Pool

To validate the transfer function and limit supply even more, half the tokens
are immediately burned by sending to the Ethereum burn address:

0x000000000000000000000000000000000000dead

The remaining tokens are then forfeited to a pool, giving us a token distri-
bution of:

Burn Address 50%
Uniswap Pool 50%

After 3 days of being a live contract, the token pool has been distributed
across more than 50 holders, with no single holder having majority.

2



Figure 1: Genesis transactions for PurrCoin (newest to oldest)

4 Conclusion

In order to enable highly decentralized apps, the source utility token itself must
be highly decentralized. PurrCoin uses a robust and battle-hardened token
library provided by OpenZeppelin that implements ERC-20 [2, 3]. We see that
by holding no pre-sale or pre-distribution of any kind, and following a disciplined
method of 50/50 Burn + Pool, a highly decentralized token was created.

References

[1] Turing completeness, “Turing completeness — Wikipedia, the free encyclo-
pedia,” 2021. [Online; accessed 10-May-2021].

[2] Fabian Vogelsteller, Vitalik Buterin, “Eip-20: Erc-20 token standard,”
Ethereum Improvement Proposals, no. 20, November 2015. [Online serial].
Available:https://eips.ethereum.org/EIPS/eip-20.

[3] “ERC20.” https://docs.openzeppelin.com/contracts/4.x/erc20. Ac-
cessed: 2021-05-01.

3


